Who are cochlear implants for?

e People with little or no hearing
- and little conductive component to the loss

e who receive little or no benefit from a
hearing aid.

e Implants seem to work best in ...

- adults who had a significant period of
relatively good hearing before becoming
profoundly deaf, and who developed good
language.

- children who are young enough to develop
language through an implant.

Essential feature

e substitute for faulty or missing inner hair
cell ...
e by direct electrical stimulation of residual
auditory nerve fibres
- but brain stem implants are also being used
e Need, at a minimum ...
- microphone + ‘processor’
- electrodes in the cochlea
- a way to connect them (radio transmission)

1. Sound is received by the microphone of the
speech processor.

2. The sound is digitized, analyzed and transformed
into coded signals.

3. Coded signals are sent to the transmitter.

4. The transmitter sends the code across the skin
to the internal implant where it is converted to
electric signals.

5. Electric signals are sent to the electrode array to
stimulate the residual auditory nerve fibres in the
cochlea.

6. Signals travel to the brain, carrying information

about sound. .




" The implant in place

Implanted radio
receiver

Electrode inserted
in inner ear

The electrode array

What are the essential purposes of
a speech processor?

e To transduce acoustical signals into
an electrical form.

e To process the acoustic signal in
various ways (e.g., filter, compress).

e To convert (or code) the resulting
electrical signals into a form
appropriate for stimulation of the
auditory nerve.




What other functions can and
might be implemented in a
speech processor?

e Minimising the effects of background
noise.

e The possibility of different processing
schemes for different situations.

e Enhancing speech features that
contribute most to speech
intelligibility.

What should an implant do?

e Mimic the most important functions
of the normal ear.

e So what does a normal ear do?
- frequency analysis
—amplitude compression

— preservation of temporal features, bot
slow and fast (e.g., through envelope
following and phase locking)
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Common elements in speech
processing

e A microphone to transduce acoustic
signals into electrical ones.

e Amplitude compression to address the
verK limited dynamic range of electro-
cochlear stimulation.

e Use of the ‘place’ principle for multiple
electrodes (mapping low to high
frequency components onto apical to
basal cochlear places).
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But speech processing schemes
vary significantly in other ways

¢ Pulsatile vs. continuously varying

(‘wavey’) stimulation.

- Not to be confused with analogue vs. digital
implementations. All electrical stimulation is
analogue.

e Simultaneous vs. non-simultaneous
presentation of currents to different
electrodes.

- Non-simultaneous stimulation requires
pulsatile stimulation
12




Multi-channel systems

e All contemporary systems present
different waveforms to different
electrodes
—to mimic the frequency analysis of the

normal mammalian cochlea.

e Think of the peripheral auditory
system as analogous to a filter bank.
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The filter bank analogy

¢ Imagine each afferent auditory nerve
fibre has a bandpass filter attached to
its input
- centre frequencies decreasing from base to

apex
inner
outer ear middle ear hair cells
——
o N\
! =

The no-brainer cochlear implant
speech processing strategy ...

e Use an electronic filter bank to
substitute for the auditory filter
bank (the mechanics of the basilar
membrane).
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A simple speech processing scheme for a
cochlear implant: Compressed Analogue (CA)

o VA,
oo AVAVAVAV:
% I (OH ol e AYAVAVAVAVAY

s ey AVATAAVATAVAVAY
Acoustic signal s WWV\/WW\NM

5000Hz -
S000Kz Ml

Elecftrical signal
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The most common current method:

Continuous Interleaved Sampling
(CIS)

eUse a filter bank approach to represent
spectral shape ...

ewith non-simultaneous pulatile
stimulation to minimise electrode
interactions

ewith pulse amplitudes modulated by the
envelope of the bandpass filter outputs.
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Continuous Interleaved Sampling
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CIS in detail
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Simulations can give us some idea
of what an implant user might
experience
But ...caveat perceptor!

e These are not exactly what an
implant sounds like ...

e but you can get some idea about
the kind of information that gets
through.
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Noise-excited Vocoding

speech
input

Y2-wave output
rectifiers filters

analysis 160 Hz multipliers ~ sum noise bands
filters lowpass
white noise source [ff———p—

Note important variants in rectification, lowpass filter cutoffs, etc. 22
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and when summed together.

Children like strawberries.
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Never mind the quality...
feel the intelligibility.

Children like strawberries.
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Other schemes: Spectral Peak Strategy — SPEAK
Necessity is the mother of invention (n of m strategies)
e The problem (historically) e
— How could devices running at relatively e — D)
slow rates be used for CIS, which |
required high rates of pulsatile 20 Programmable Filters -
Stimulation? ;gg:;- - Specfro Peok - l.* f;
. Extractor Z
e The solution A Hise =, v
. 350Hz - — - f
- Pick and present pulses only at the O— 2 I | “l o
significant peaks in the spectrum. Acoustic oo |7 |
signol etc 100Hz 8kHz ~ ; '.J‘
g%:iﬂ _J (Sample of sound spectrum) = ')
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Electrical signal2




SPEAK stimulation pattern
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Restricted dynamic range
means compression is crucial
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Absolute thresholds and maximum acceptable loudness levels
Nelson et al. (1996) JASA

Intensity jnds in electrical

s (opposed to acoustic)

3. stimulation:

. 1) ‘miss’ Weber’s Law
: more

2) are typically
smaller, but not by enough
to offset reduced dynamic
range.

Number of Al,s Steps

CI users here had 7-45
discriminable steps in the

oV TV EEs e A PG R e total dynamic range,

e suer of ceminane mencty weps o et opper s . COMpared to = 83 in normal

mulative AZp {10 log(7+AZ)—10 log(D)} as a function of stimulus level in f
percent dynamic range (%DR in dB), which were calculated from the com- h e a rl n g
posite Weber functions in Fig. 6. Curves for JPB and FXC were not plotted

because they overlapped with the curve for REM. Lower panel: The total
number of discriminable intensity steps across dynamic range is given for
each of the eight subjects. The total number of discriminable intensity steps
for normal acoustic hearing, calculated from Weber fractions reported by
Schroder er al. (1994), are shown for each of five frequencies within the
inset

Nelson et al. (1996) JASA 35

Acoustic/electrical loudness matches

240
4 different stimulation frequencies

o vs. contralateral 1.5 kHz tone

150 Hz
200 Hz
300Hz

400Hz

120

\

80

STIMULATION AMPLITUDE (uA p-p)

40

B oO 10 20 30 40 50 60 70 80 90 100
SPL (dB)
Eddington et al. 1978 Ann Otol Rhinol Laryngol 36




Loudness
grows much
faster in
electrical
stimulation
(hyper-
recruitment!)
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the dynamsc range was oaly 18 dB

Gap Threshold (ms)

Temporal resolution:
gap detection

Gap Detection as a Function of Loudness
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Relationships

modulation detection
thresholds measured at
100 Hz, at a number of
levels (previous slide)

Fu 2002 NeuroReport

to performance with
speech

100
80 -
O
= 60
e o
g
3 40 1
o]
20 - N
@ Consonant, r2=0.971, p<0.0001
5 O Vowel, r2=0.719, p=0.0039
45 40 35 30 25 20 -IS

Mean modulation detection threshold (dB re 100%)

Fig. 2. Correlation between phoneme identification (percent correct)
and subjects’ mean modulation detection thresholds (cakulated across
each subject’s entire dynamic range). Consonant scores and linear regres-
sion are shown by the filled cirdes and solid line. Vowel scores and linear
regression are shown by the open dirdes and dashed line. 41

Perceiving variations in amount of

activity across electrodes

Essential for signaling of ...

- spectral shape

Spectral shape is encoded by
relatively slow level changes across
electrodes

Striking fact

- preservation of fast modulation rates
not necessary for intelligibility in noise-
vocoded speech
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Restricting modulation rates allowable
in noise-excited vocoding ¢
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Discrimination of rippled noise

0.25 ripplesf/octave e Inverted

find the maximum ripple
density at which it is possible
to discriminate ‘standard’
ripple noise from its inverted
version

standard

1 ripples/cctave

Relative magnitude (dB)

‘This test is hypothesized to
provide a direct measure of the
ability of listeners to perceive the
frequency locations of spectral
peaks in a broadband acoustic

signal.’

Frequency (kHz)

Henry et al. 2005 J Acoust Soc Am 45
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Relationships to performance with

Score (% correct)

12 hvd by 20 talkers

speech in quiet

16 VCVs by 4 talkers

Vowels Consonants
100 -
o w] g
i o
J’-. Q o
° o ] 9 | 4
o° .o 60 %8 .-
08 -4 ® .
o o_ %o
° w{o0 &
)
o o® "/' ° o
20 8° 2
(] =027 ? = 0.36
p=0.01 ° o p =0.003
. , 0 - .
0 1 2 0 1 2

Spectral peak resolution threshold (ripples/octave)

Henry et al. 2005 J Acoust Soc Am .

Statistical interlude:
The effect of outliers

60 80 100
80 100

60

40

r2=0.09
2 2 p>0.15
o o
0 0.5 1 1.5 2 0 0.5 1 1.5 2
rips rips
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Statistical interlude:
The effect of outliers

o o

g 5

8 8

-2 =2

2=

g . <o. 2
S P S p<0.006

o o
o 0.5 1 1.5 2 o 0.5 1 1.5 2

rips rips

consonants

49

Relationships to performance with
speech in noise

SRT determined for selection of one of 12 spondees

In two-talker babble In steady-state noise
10 10
(V]
(8] r==0.55 r=-0.62
c = =
S o p = 0.002 5 p =0.0004
.
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i
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FIG. 6. Spectral-ripple discriminatic

correlated with speech perception in noise. The figure shows the relationship between the spectral-
abble (left panel) and steady-state noise (right panel) using data from the first six repetitions. Linear

ripple thresholds and SRTs in two-tal
egressions are represented by the dotted lines.

regression:

Won et al. 2005 JARO 50

Why is speech melody (voice
pitch) important to hear?

e Contributes to speech intelligibility in all
languages

e A good supplement to lipread information

e May play an important role in separating
speech from background noises

e Appears to play a more crucial role for the
young child developing language
e Crucial in so-called tone languages
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Pitch based on a purely
temporal code
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dF IN Hz

Pitch based on a purely
temporal code
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Melody recognition

100
90
80

60

50
w0l 12 songs familiar to most

sl people, synthesised with
2] ﬁ and without natural
10l 7 N rhythm

rhythm no-rhythm

Kong et al. (2004)

Conditions

Figure 4. Melody identification scores from individual co-

ch
hol

lear implant listeners with the original melodies. The
rizontal dashed line indicates the mean chance perfor-

mance. The vertical bars represent different subjects in each

Cco

ndition.

54

CI users classifying rise/fall
contours on diphthongs
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Green et al. 2004 ] Acoust Soc Amer 55

Melody coded as periodicity in rapid within-channel patterns
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The representation of melody can be messy! Perception of fundamental pitch in

““‘:Q‘;‘i’?lﬂm N i P P 5 O o P . O 10 55 W P COmplex waves iS Very pOOI"
s WWW’MWWWWM” oA A A
T aaa YIRS o s 0 v LTSRN .
3 CEEEEEEBESIISEELLiiE: e Lower harmonics cannot be resolved
e ——— as in normal hearing

i IR T e Phase-locking seems ‘different’
T MMM e Mis-match between place of

S A excitation and temporal pattern may
be important
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What happens when an electrode Simulations of incomplete insertions
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Can the deleterious effects of spectral
shifting be overcome over time?

Pre-training Post-training
o3 o
100
words in sentences over 3
w 801 hours of experience using CDT E
@
‘2 604 E
&
wm
X *
m 409 + .
Q e
o <o
Z 209
§ @ é @ I:]unshmed
£ 0 = ] . [ shirted
N= 8 8 8 8 8 8 8 8 8 8 8 8

1 2 3 4 5 6 7 8 9 10

session number

normal listeners in simulations: Rosen et al. 1999 J Acoust Soc Am

Hair cell substitution?

1000800 000 0

base > apex

from Lynne Werner: http://depts.washington.edu/sphsc461/CI_notes.htm

Why is a CI not as good as normal
hearing?

e It's a damaged auditory system, presumably with
accompanying neural degeneration (e.g. dead regions)

e Electrodes may not extend fully along the length of the
basilar membrane (BM), so mis-matched tuning and
restricted access to apical regions (where nerve survival is
typically greatest)

e 3000 IHCs vs. a couple of dozen electrodes, hence poorer
frequency selectivity

e Current spreads across BM, hence poorer frequency
selectivity

e Less independence of firing across nerve fibres, appears to
affect temporal coding

¢ Small dynamic ranges but intensity jnd’s not
Icorglespondingly smaller, hence fewer discriminable steps in
oudness

e But good temporal and intensity resolution
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